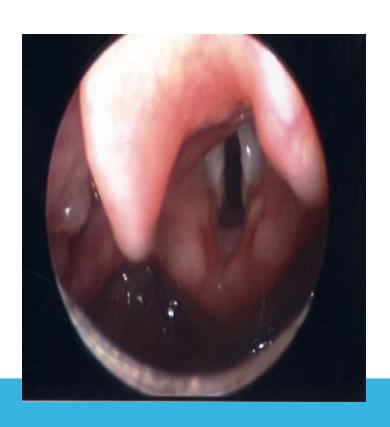

AIRWAY MANAGEMENT 101

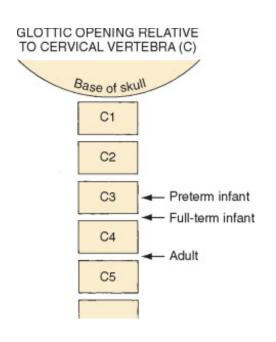
MANAGEMENT OF THE "ROUTINE" PEDIATRIC AIRWAY

ANDREW TRIEBWASSER, MD DEPARTMENT OF ANESTHESIOLOGY HASBRO CHILDREN'S HOSPITAL

LARYNGEAL ANATOMY

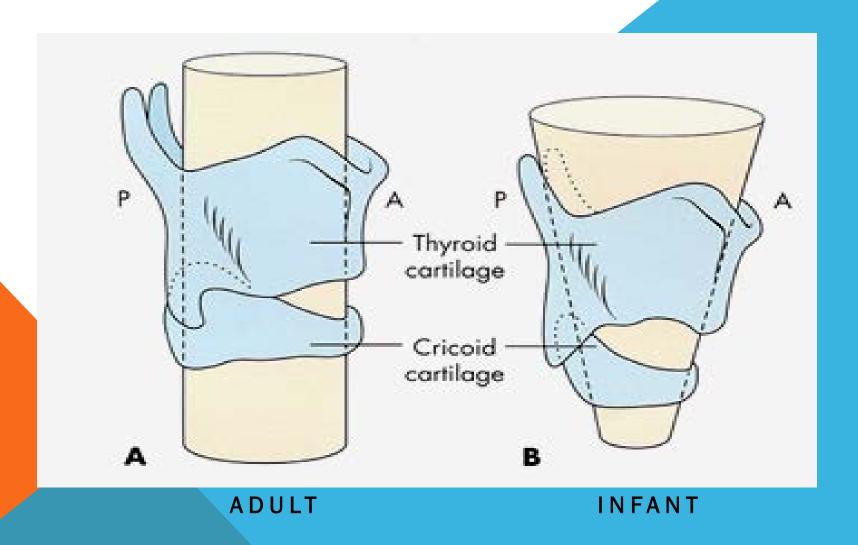


Neonatal larynx and schematic


DEVELOPMENTAL ANATOMY OF THE LARYNX (I)

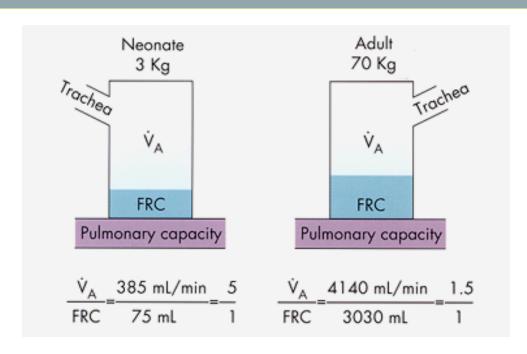
in infants.....

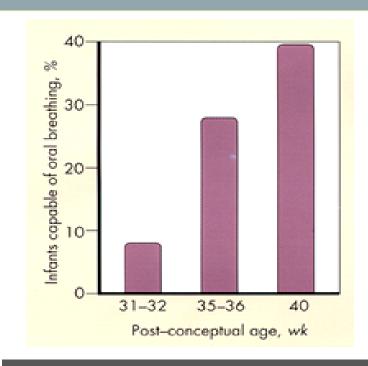
- tongue proportionally larger
- occiput proportionally larger
- larynx more cephalad
- epiglottis angled from trachea
- short, omega-shaped epiglottis
- vocal folds angled
- narrowing of cricoid ring



DEVELOPMENTAL ANATOMY OF LARYNX (II)

Larynx more cepahalad in infants


DEVELOPMENTAL ANATOMY OF LARYNX (III)



DEVELOPMENTAL PHYSIOLOGY OF THE AIRWAY (I)

- preponderance of type I muscle fibers
- obligatory nasal breathing
- low apneic threshold
- sensitivity genioglossus muscle to halothane
 (& presumably sevoflurane)

DEVELOPMENTAL PHYSIOLOGY OF THE AIRWAY (II)

apneic threshhold

obligate nasal breathing

AIRWAY PATENCY IN ANESTHETIZED CHILDREN

- immobile maxillary block
- mobile mandibular block obstructs
- loss of genioglossus tone (Motoyama)
- adenoidal hypertrophy
- non-invasive maneuvers / CPAP
- artificial airways

AIRWAY MANAGEMENT: SOAP

Suction

Oxygen

Airway Equipment

Pharmacology (monitoring)

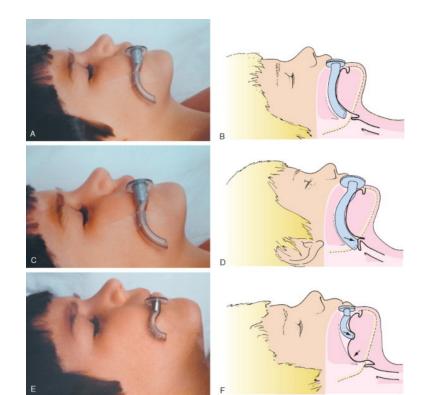
COMPRESSED GAS CYLINDERS (I)

you open your E cylinder oxygen container by slowly turning the valve CCW until fully open. The pressure in the cylinder is 650 psi.

Assuming flow of 4 LPM, how many minutes of oxygen remain?

COMPRESSED GAS CYLINDERS (II)

- E cylinders contain ~ 660 liters
- working pressure ~ 2000 psi
- the tank is ~ 1/3 full (220 L)
- 45 minutes of oxygen remaining
- USA oxygen tanks are green
- INTL oxygen tanks are white


ROUTINE AIRWAY EQUIPMENT

- laryngoscope
- breathing bag
- oral airways
- suction catheter
- tonsil-tip suction

- endotracheal tubes
- stylets
- masks (± LMA)
- extra blades
- pharmacology

CORRECT PLACEMENT OF ORAL AIRWAYS

Tip just cepalad to angle of mandible - OPTIMAL

Tip posterior to angle of mandible - pushes epiglottis down & worsens obstruction

Tip above angle of mandible - kinks the tongue

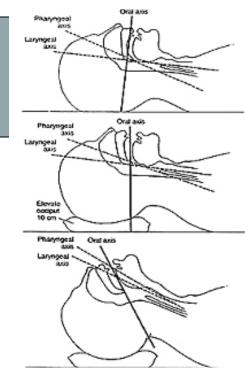
THE LARYNGEAL MASK AIRWAY

- one of the supraglottic devices
- steep learning curve
- •doesn't "seal" airway
- may provide temporizing ventilation in "cannot intubate"
- adjunct for intubation ± FOB

Patient weight (kg)	LMA size	Cuff volume (ml)
< 5	1	4
5-10	1.5	7
10-20	2	10
20-30	2.5	14
30-50	3	20
50-70	4	30
70-100	5	40

ENDOTRACHEAL INTUBATION

- ensures airway patency
- airway protection
- pulmonary toilet
- IPPB with FiO2 of 1.0
- positioning other than supine (±)


KEYS TO SUCCESSFUL ENDOTRACHEAL INTUBATION

- adequate SOAP prep
- optimize patient position
- adequate mouth opening
- tongue well swept to left
- control of epiglottis
- external manipulation larynx
- watch through the cords

OPTIMIZING PATIENT POSITION

- first described by Jackson 1913
- Bannister & Macbeth "sniffing" 1944
 - slight neck flexion & extend a-o joint
- Adnet (2001) MRI criteria sniffing no better than simple extension – both better than neutral
 - axes are **not** aligned in sniffing position (as depicted by the "classic" diagram above)

KEYS TO SUCCESSFUL ENDOTRACHEAL INTUBATION

- adequate SOAP prep
- optimize patient position
- adequate mouth opening
- •tongue well swept to left
- control of epiglottis
- external manipulation larynx
- watch through the cords

MANDIBULAR ADVANCEMENT & LARYNGEAL VIEW

TAMURA M ET AL. ANESTHESIOLOGY 100:598;2004

Procedures	С	M	В	ВМ
Laryngeal view	E	E	E	A FE
Cormack- Lehane	III	II	11	I
Rating score	4	3	2	1

BURP (backward upward pressure) better view than mandibular advancement – best view with BOTH

SUGGESTED LARYNGOSCOPE BLADES

AGE	MILLER	MAC	WIS-HIPPLE
premie	0		
neonate	0-1		1
newborn – 18 months	1		1
18 months- 5 years			1.5
5-12 years	2	2	
> 12 years	2-3	3	

SUGGESTED ETT SIZE BY AGE

AGE	SIZE (ID mm)	DEPTH (cm)
premie	2.5 - 3.0	7
term < 6 months	3.0 - 3.5	9
6 – 9 months	3.5 - 4.0	10
9 - 18 months	4.0 - 4.5	11
18 - 24 months	4.5	12
3 years	4.5 - 5.0	13
5 years	5.0 - 5.5	15
10 years	6.0 ± cuff	17
14 years	6.5 - 7.0 cuff	18 - 20

RATIONALE FOR UNCUFFED ETT IN CHILDREN

COMPARISON OF CUFFED AND UNCUFFED ENDOTRACHEAL TUBES IN YOUNG CHILDREN

KHINE HH ET AL. ANESTHESIOLOGY 86:627, 1997

- 488 pts < 8 years undergoing GETA
 - uncuffed size (mm ID) = (age + 16) / 4
 - cuffed size(mm ID) = (age/4) + 3
- appropriate in 99% (vs. 77%) p < 0.001
- advantages \(\) laryngoscopies, \(\) FGF, \(\) OR anesthetic
- incidence of croup 1.2% vs. 1.3% (ND)

CONFIRMING PLACEMENT OF ETT

ARE WE IN?

- auscultation of BS
- symmetrical chest movement
- Iisten over stomach
- detection of CO2

WELL POSITIONED?

- identify carina
- chest radiograph
- palpation of cuff

PHARMACOLOGY OF AIRWAY MANAGEMENT: INDICATIONS

- facilitate a/w management
- reduce a/w trauma
- blunt rises ICP / IOP / MAP
- diminish airway reactivity
- reduce "stress" response
- facilitate transport / procedures
- humane considerations

PHARMACOLOGY OF AIRWAY MANAGEMENT: CONTRA-INDICATIONS

- insufficient expertise
- insufficient monitoring / equipment
- insufficient personnel
- during CPR
- ± hemodynamic instability
- potential loss of airway

AIRWAY PHARMACOLOGY: SEDATIVES AND ANALGESICS

DRUG	DOSE (mg/kg)	SIDE EFFECTS
fentanyl	0.001-0.003	n/v; hypoventilation
midazolam	0.05-0.15	hypoventilation, especially if combined with opioids
thiopental	1-6	apnea, hypotension
propofol	1-3	apnea, hypotension, painful injection
ketamine	0.5-2	apnea, secretions, ICP
lidocaine	1-1.5	

AIRWAY PHARMACOLOGY: NEUROMUSCULAR BLOCKADE

DRUG	DOSE (mg/kg)	SIDE EFFECTS
succinylcholine	1-2	bradycardia, hyperkalemia in at-risk pts
rocuronium	0.8-1.2	pain, precipitation with TPL
vecuronium	0.1-0.3	slow onset unless higher dose
pancuronium	0.1	heart rate increase slow onset and offset
atracurium	0.3-0.6	histamine release slower onset

MANAGEMENT OF "FULL STOMACH"

- risk factors
 - ingestion (delayed pain, stress, opioids)
 - obesity, GERD
 - esophageal pathology
- pharmacologic adjuncts
- airway management options
 - awake intubation or tracheostomy
 - rapid sequence induction (RSI)

RAPID SEQUENCE INDUCTION *

- metoclopramide and/or H-2 blocker (if time)
- consider decompression gastric contents
- denitrogenation (FiO₂ 1.0)
- rapid IV induction with rapid onset NMB
 - sux, rocuronium, high dose vecuronium
- Sellick's maneuver
- apneic oxygenation vs. gentle PPV
- cricoid maintained until successful intubation

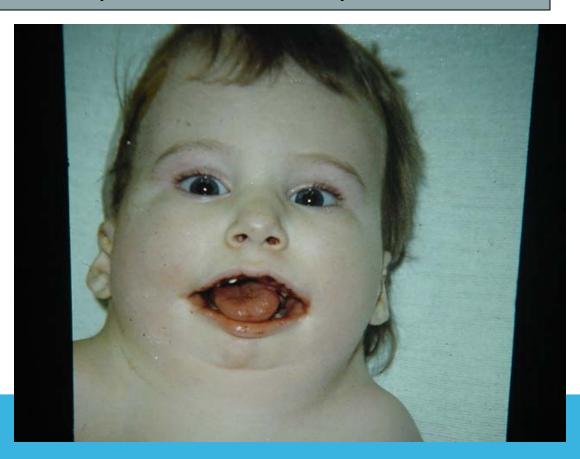
* RSI COVERED MORE FULLY IN A SEPARATE POWERPOINT PRESENTATION

CANNOT INTUBATE: BE PREPARED

- call for help
- "best" laryngoscopy
- multi-handed mask ventilation
- LMA
- emergency oxygenation
- definitive (surgical) airway

emergency cricothyrotomy

THE DIFFICULT AIRWAY: INTRODUCTION


IMPORTANCE OF RECOGNITION (RISK FACTORS)

access

- positioning (neck)
- mouth opening
- macroglossia

visualization

- micrognathia
- target
 - tumors, infection etc.

