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When a heart attack happens, blood flow to the heart is blocked causing billions of heart muscle cells to

die. Unfortunately, cardiomyocytes lose their ability to regenerate shortly after birth. Thus, the adult

human heart cannot replace the lost cardiomyocytes following a heart attack. Thus, identifying novel targets

that stimulate cardiomyocyte proliferation is urgently needed. Rho−associated protein kinase 2 (ROCK2) is a

downstream effector of Rho pathway which regulates cytoskeletal tension. My project aims to determine whether

modulating cytoskeletal tension will stimulate the mechanotransduction pathway that controls cardiomyocyte

proliferation.
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Actomyosin−mediated cellular tension promotes Yap nuclear
translocation and myocardial proliferation through a5 integrin
signaling



pMLC2, fibronectin and a5 integrin expression

A

(A) Working model for cytoskeletal regulation of cardiomyocyte (CM) proliferation. 
(B) Western blot analysis of ROCK2, phosphorylation of substrates MYPT1 and MLC2, and  NMIIB expression in P5 
ROCK2:ER and control hearts after tamoxifen treatment.
(C) Representative immunofluorescent images of P7 ROCK2 heart sections stained pMLC2, a5 integrin, and fibronectin. 
(D) Left: Representative immunofluorescent images of P7 heart sections from control and ROCK mice were co-stained 
with EdU (green)/a-actinin (red), pHH3 (green)/a-actinin (red), and Yap (red)/a-actinin(green). Right: Quantification of 
EdU positive CMs percentage at P7 (n=10-12), pHH3-positive CMs percentage at P7 (n=5-6), nucleus-Yap positive CMs 
percentage at P7 (n=5-6). Arrow heads indicate EdU positive CMs, pHH3 positive CMs, and nucleus-Yap positive CMs in 
ROCK:ER mice. ROCK:ER pups lacking the Cre transgene serve as controls. n: animal number. A minimum of 10 fields 
were analyzed per animal. **P<0.01, ***P<0.001 by Student's t-test. Scale bar: 25mm. Error bars represent S.E.M.
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Cardiomyocyte proliferation and Yap nuclear translocation


